Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 171927, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556006

RESUMO

Rivers are important transport pathways for microplastics into the ocean, but they can also be potential sinks due to microplastic deposition in the sediments of the river bed and adjacent floodplains. In particular, floods can (re)mobilise microplastics from sediments and floodplains, (re)deposit and relocate them depending on the floodplain topography. The knowledge about fluvial microplastic input to floodplains, their spatial distribution and their fate in floodplain soils is limited. To investigate this topic, we sampled soil at a depth of 5-20 cm along three transects in three different Rhine floodplains. We analysed the soil samples in tandem with pyrolysis GC/MS and ATR- & µ-FPA-FTIR for their microplastic abundance and mass concentrations. To study the influence of flood frequency on the microplastic abundance in the three floodplains, we fitted a hydrodynamic flood model (MIKE 21, DHI, Hørsholm, Denmark) and related the results to the respective spatial microplastic distribution. We found similar microplastic distribution patterns in each floodplain. The highest microplastic abundance (8516-70,124 microplastics kg-1) and mass concentration (46.2-141.6 mg kg-1) were consistently found in the farthest transects from the Rhine in a topographical depression. This microplastic distribution pattern is detectable with both, pyrolysis GC/MS and FTIR. The strongest correlation between the results of both methods was found for small, abundant microplastic particles. Our results suggest that the spatial distribution of microplastics in floodplains is related to the combination of flood frequency and local topography, that ought to be explicitly considered in future studies conducted in floodplains. Finally, our results indicate that pyrolysis GC/MS and FTIR data are comparable under certain conditions, which may help in the decision for the analytical method and sampling design in future studies.

2.
Environ Int ; 181: 108288, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37918065

RESUMO

A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.


Assuntos
Monitoramento Ambiental , Peixes , Animais , Humanos , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos
3.
Mar Pollut Bull ; 195: 115427, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659386

RESUMO

Micropollutants (MPs) are transported via rivers from industrial and urban areas to the German Bight (G.B.). In contrast to the mounting rivers less information is available on the occurrence of MPs and their transformation products (TPs) in the marine environment of the G.B. In this study 83 compounds, including 26 metabolites of pharmaceuticals and environmental TPs were measured in water at 46 sampling sites in estuaries of Ems, Weser, Elbe, and the G.B. 36 MPs were even detected in the open sea areas (salinity > 34 psu) at 0.07-5.1 ng/L and to the best of our knowledge 10 MPs were detected in the marine environment for the first time. Concentrations of 8 MPs exceeded PNEC values suggesting a potential risk for sea life. Spatial distribution and relation of MPs with salinity allowed identifying emission paths for certain compounds and revealed the emissions from the River Elbe and Rhine.

4.
NanoImpact ; 32: 100484, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734654

RESUMO

There is a lack of knowledge about the fate and impact of microplastics (MPs) and nanoplastics (NPs), as well as their potential uptake and impact on plants and microorganisms. The predicted environmental concentrations (PEC) of frequent polymers in soils are low, and therefore, difficult to detect with the available techniques, which explains the knowledge gaps. Therefore, model particles (polystyrene particles (PS-P), 343 nm) and palladium (Pd) nanoparticle-doped polystyrene particles (PS-Pd-PS-P, 442 nm) were synthesized, characterized, and subsequently applied to agricultural soils (Cambisol, Podzol, PS target contents: 25 mg kg-1, 75 mg kg-1, 225 mg kg-1). A combination of different techniques, such as inductively coupled plasma-mass spectrometry (ICP-MS), pyrolysis-gas chromatography-mass spectrometry (Pyr-GC-MS), dynamic light scattering (DLS), and scanning electron microscopy (SEM), were used to characterize the particles in the dispersions, soils and plants. The spiked soils were applied to a chronical plant toxicity test with oat (Avena sativa). The applied particle contents could be recovered from both soils by ICP-MS (Pd, 89% - 99%), and Pyr-GC-MS (PS, 73% - 120%). Moreover, non-aggregated particles in soils and on oat roots were visualized through SEM. The ratio obtained for the Pd contents in oat roots to that in the Cambisol (2.2-2.7) and the Podzol (2.3-2.6) implied that particles accumulated on the root surface or in the roots. No Pd was detected in the oat shoots, which indicated that no translocation occurred from the roots to the shoots. Despite particle accumulation at or in the roots, no clear effects on plant growth were observed. Furthermore, the soil microorganisms (Podzol) and the soil water repellency (Cambisol, Podzol) showed no clear monotone concentration-response relationship after exposure to PS-P and PS-Pd-PS-P. The findings are complex and illustrate the urgent need for further sophisticated experimental studies to elucidate the impacts of NPs on physicochemical soil function, plants, and soil organisms. The model PS-P doped with Pd nanoparticles significantly enhanced the development and validation of methods for investigating MPs and NPs in environmental matrices, highlighting their considerable potential for further studies.


Assuntos
Poliestirenos , Solo , Solo/química , Poliestirenos/toxicidade , Microplásticos/química , Plásticos , Paládio/toxicidade , Testes de Toxicidade Crônica , Oxirredução
5.
Chemosphere ; 338: 139479, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37442386

RESUMO

Suspended particulate matter (SPM) plays a major role in nutrient cycles and for the transport of pollutants within local and transboundary water catchments. Obtaining representative SPM samples from rivers, lakes, inland and coastal waters is crucial for quantitative and qualitative chemical analyses to correctly describe the chemical status of a water body. However, a representative sampling of SPM over time is challenging due to the heterogeneity of SPM particles sizes, their non-uniform distribution in rivers, and a variety of sampling devices being in use. Therefore, we investigated the efficiencies of five different sampling devices commonly used in national and international monitoring programs to collect representative SPM samples. We tested three passive sedimentation-based samplers (SBSs: sedimentation box, SB; sedimentation tank, ST; Raetz Sampler, RS), and two active separation techniques (continuous flow centrifuge, CFC; vacuum filtration, VF) in an experimental laboratory setup using in-house SPM standard suspensions (mineral, organic, and microplastic particles) with defined particle sizes. The mass-based efficiencies of the three examined SBSs were 0-66% for the mineral and organic particles <75 µm, where the mean particle sizes of collected samples were always shifted to bigger sizes compared to the initial suspensions. The efficiencies of the three SBSs to collect microplastic particles <80 µm were <20% due to the lower densities of microplastic compared to organic and mineral particles. In contrast to the SBSs, VF and CFC units showed excellent efficiencies >86% for all tested materials, with similar particle size distributions of the sampled material compared to those of the inlet suspensions. In conclusion, SPM sampling efficiencies of sampling units have to be carefully considered and compared to the respective aims of the monitoring approaches, especially when statements are derived from quantitative results on SPM.


Assuntos
Material Particulado , Poluentes Químicos da Água , Material Particulado/análise , Microplásticos , Plásticos , Suspensões , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Rios , Água/análise
6.
Sci Total Environ ; 885: 163753, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37121317

RESUMO

In this study, we compare analytical methods for PFAS determination-target analysis, non-target screening (NTS), direct total oxidizable precursor assay (dTOPA) and extractable organically bound fluorine (EOF). Therefore, suspended particulate matter (SPM) samples from German rivers at different locations in time series from 2005 to 2020 were analyzed to investigate temporal and spatially resolved trends. In this study 3 PFAS mass balances approaches were utilized: (i) PFAA target vs. PFAS dTOPA, (ii) PFAS target vs. EOF and (iii) PFAS target vs. PFAS dTOPA vs. organofluorines NTS vs. EOF. Mass balance approach (i) revealed high proportions of precursor substances in SPM samples. For the time resolved analysis an increase from 94% (2005) to 97% in 2019 was observable. Also for the spatial resolved analysis precursor proportions were high with >84% at all sampling sites. Mass balance approach (ii) showed that the unidentified EOF (uEOF) fraction increased over time from 82% (2005) to 99% (2019). Furthermore, along the river courses the uEOF increased. In the combined mass balance approach (iii) using 4 different analytical approaches EOF fractions were further unraveled. The EOF pattern was fully explainable at the sampling sites at Saar and Elbe rivers. For the time resolved analysis, an increased proportion of the EOF was now explainable. However, still 27% of the EOF for the time resolved analysis and 25% of the EOF for the spatial resolved analysis remained unknown. Therefore, in a complementary approach, both the EOF and dTOPA reveal unknown gaps in the PFAS mass balance and are valuable contributions to PFAS risk assessment. Further research is needed to identify organofluorines summarized in the EOF parameter.

7.
PeerJ ; 11: e15192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065699

RESUMO

The broad use of plastics and the persistence of the material results in plastic residues being found practically everywhere in the environment. If plastics remain in the (aquatic) environment, natural weathering leads to degradation processes and compounds may leach from plastic into the environment. To investigate the impact of degradation process on toxicity of leachates, different types of UV irradiation (UV-C, UV-A/B) were used to simulate weathering processes of different plastic material containing virgin as well as recyclate material and biodegradable polymers. The leached substances were investigated toxicologically using in-vitro bioassays. Cytotoxicity was determined by the MTT-assay, genotoxicity by using the p53-CALUX and Umu-assay, and estrogenic effects by the ERα-CALUX. Genotoxic as well as estrogenic effects were detected in different samples depending on the material and the irradiation type. In four leachates of 12 plastic species estrogenic effects were detected above the recommended safety level of 0.4 ng 17ß-estradiol equivalents/L for surface water samples. In the p53-CALUX and in the Umu-assay leachates from three and two, respectively, of 12 plastic species were found to be genotoxic. The results of the chemical analysis show that plastic material releases a variety of known and unknown substances especially under UV radiation, leading to a complex mixture with potentially harmful effects. In order to investigate these aspects further and to be able to give recommendations for the use of additives in plastics, further effect-related investigations are advisable.


Assuntos
Plásticos , Poluentes Químicos da Água , Plásticos/toxicidade , Raios Ultravioleta , Proteína Supressora de Tumor p53 , Poluentes Químicos da Água/toxicidade , Bioensaio , Estrogênios
8.
Environ Sci Technol ; 57(12): 4806-4812, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917996

RESUMO

A reliable analytical method has been developed to quantify poly(vinyl chloride) (PVC) in environmental samples. Quantification was conducted via combustion ion chromatography (C-IC). Hydrogen chloride (HCl) was quantitatively released from PVC during thermal decomposition and trapped in an absorption solution. Selectivity of the marker HCl in complex environmental samples was ensured using cleanup via pressurized liquid extraction (PLE) with methanol at 100 °C (discarded) and tetrahydrofuran at 185 °C (collected). Using this method, recoveries of 85.5 ± 11.5% and a limit of quantification down to 8.3 µg/g were achieved. A variety of hard and soft PVC products could be successfully analyzed via C-IC with recoveries exceeding >95%. Furthermore, no measurable overdetermination was found for various organic and inorganic matrix ingredients, such as sodium chloride, sucralose, hydroxychloroquine, diclofenac, chloramphenicol, triclosan, or polychlorinated biphenyls. In addition, sediments and suspended particular matter showed PVC concentrations ranging up to 16.0 and 220 µg/g, respectively. However, the gap between determined polymer mass and particle masses could be significant since soft PVC products contain plasticizers up to 50 wt %. Hence, the results of the described method represent a sum of all chlorine-containing polymers, which are extractable under the chosen conditions.


Assuntos
Plásticos , Cloreto de Vinil , Microplásticos , Cromatografia Gasosa-Espectrometria de Massas , Plastificantes/química , Polímeros , Cloreto de Polivinila/química
9.
Water Res ; 199: 117203, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34004441

RESUMO

Plastics can release numerous chemicals and thereby, contribute to the chemical pollution in aquatic systems. To which extent environmental degradation processes influence the release of plastic chemicals, is currently unknown and subject of research. We therefore evaluated aqueous leachates of 12 differently formulated plastics (e.g., pre-production, post-industrial and recycled pellets as well as final products) using in vitro bioassays and chemical analysis via LC-HRMS nontarget approach. We weathered these plastics by UV irradiation (UV-C and UV-A/B) under laboratory conditions in dryness and a subsequent leaching period in ultrapure water ('atmospheric' weathering) or directly in water ('aquatic' weathering, UV-A/Baq). A dark control (DC) without UV light served as a reference treatment. Some plastics triggered several toxicological endpoints (low-density polyethylene recyclate (LDPE-R), starch blend (SB), bio-based polybutylene succinate (Bio-PBS) and polyvinyl chloride (PVC)), whereas others caused little to no effects (polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP) and LDPE). UV irradiation enhanced the plastics' toxicity, even for samples initially evaluated as toxicologically inconspicuous. The plastic samples caused oxidative stress (85%), baseline toxicity (42%), antiestrogenicity (40%) and antiandrogenicity (27%). Positive findings were measured after UV-C (63%) and UV-A/Baq (50%) treatments, followed by UV-A/B (48%) and DC (33%). Overall, we detected between 42 (DC) and 2896 (UV-A/Baq) chemical compounds. Our study demonstrates that differently formulated plastics leach toxic chemicals. UV exacerbates the plastics' toxicity by either generating active compounds and/or by facilitating their release. UV light even leads to the release of bioactive compounds from plastics of low chemical complexity. To prevent the exposure to plastic-associated chemicals, the application of chemicals could be reduced to a minimum, while on a regulatory level the evaluation of plastic eluates could be another focal point next to singular compounds.


Assuntos
Plásticos , Raios Ultravioleta , Polietileno , Polipropilenos , Poliestirenos
10.
Aquat Toxicol ; 231: 105723, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385845

RESUMO

Microplastics (MPs) as complex synthetic pollutants represent a growing concern for the aquatic environment. Previous studies examined the toxicity of MPs, but infrequently used a natural particle control such as kaolin. The cause of toxicity, either the physical structure of the particles or chemical components originating from the MPs, has rarely been resolved. Moreover, the ecotoxicological assessment of biodegradable plastics has received little attention. To narrow down the main driver for toxicity of irregular biodegradable MPs, we conducted a series of 28-days sediment toxicity tests with the freshwater oligochaete Lumbriculus variegatus and recorded the number of worms and dry weight as endpoints. Therefore, MPs containing several biodegradable polymers were either mixed with the sediment or layered on the sediment surface with concentrations from 1 to 8.4% sediment dw-1. Kaolin particles were evaluated in parallel as particle control. Furthermore, aqueous leachates and methanolic extracts as MP equivalents as well as solvent-treated, presumably pure MPs were investigated after mixing them into the sediment. Our results reveal that MP mixed with the sediment induced stronger adverse effects than layered MP. Kaolin particles caused no adverse effects. In contrast, they enhanced dry weight in both applications. The impact of aqueous leachates was comparable to the control without MPs, whereas methanolic extracts affected the worm number at the highest concentration with 100% mortality. Solvent-treated, presumably pure MP resulted in mostly higher worm numbers when compared to untreated MPs mixed into the sediment. This study demonstrates that MPs mixed into the sediment affect L. variegatus more than MPs that are layered on the sediment surface. Kaolin as a natural, fine-sized particle control created somewhat favorable conditions for the worm. The main driver for toxicity, however, proved to be chemicals associated with the plastic product and its previous content.


Assuntos
Água Doce/química , Microplásticos/toxicidade , Oligoquetos/efeitos dos fármacos , Testes de Toxicidade , Animais , Biodegradação Ambiental , Sedimentos Geológicos/química , Tamanho da Partícula , Solventes/química , Poluentes Químicos da Água/toxicidade
11.
Environ Pollut ; 268(Pt A): 115724, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33183868

RESUMO

Microplastic abundances have been studied intensively in the last years in marine and freshwater environments worldwide. Though several articles have been published about the Mediterranean Sea, only few studies about the Black Sea exist. The Black Sea drains into the Mediterranean Sea and may therefore significantly contribute to the Mediterranean marine pollution. So far, only very few articles have been published about micro-, meso- and macroplastic abundances in the Western Black Sea. In order to fill this knowledge gap and to decipher the number of plastics on the water surface, 12 samples were collected from surface waters with a neustonic net (mesh size 200 µm) in the Black Sea close to the Danube Delta and the Romanian shore. Organic matter was digested and plastic particles were isolated by density separation. The results of visual inspection, pyrolysis GC-MS (for microplastics) and ATR-FTIR (for mesoplastics >5 mm) revealed an average concentration of 7 plastic particles/m³, dominated by fibers (∼76%), followed by foils (∼13%) and fragments (∼11%). Only very few spherules were detected. The polymers polypropylene (PP) and polyethylene (PE) dominated which is in line with other studies analyzing surface waters from rivers in Western Europe as well as in China. Statistical analyses show that the plastic concentration close to the mouth of the Danube River was significantly higher than at four nearshore regions along the Romanian and Bulgarian coastline. This could be explained by plastic inputs from the Danube River into the western part of the Black Sea.


Assuntos
Plásticos , Poluentes Químicos da Água , Mar Negro , Bulgária , China , Monitoramento Ambiental , Europa (Continente) , Mar Mediterrâneo , Poluentes Químicos da Água/análise
12.
Water Res ; 188: 116515, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125988

RESUMO

Previous studies have shown the high ecotoxicological potential of progestogens (PGs) on the reproductive system of aquatic organisms. Yet the ubiquitous presence of several PGs in wastewater treatment plant (WWTP) effluents indicates an incomplete removal during treatment. To investigate the fate and behavior of PGs during biological wastewater treatment, nine commonly used PGs were incubated in aerobic lab-scale degradation experiments with activated sludge taken from a municipal WWTP. The degradation kinetics revealed a fast removal after 48 h for most of the compounds. Cyproterone acetate and dienogest were the most recalcitrant of the analyzed steroids with half-lives of 8.65 h and 4.55 h, respectively. Thus, only moderate removals of these PGs can be predicted in full-scale WWTPs. Moreover, numerous transformation products (TPs) were detected via high-resolution mass spectrometry. Hydrogenation or dehydrogenation of ring A and non-selective hydroxylations of 17α-hydroxyprogesterone derivatives (medroxyprogesterone acetate, chlormadinone acetate, cyproterone acetate) as well as for 19-nortestosterone derivatives (dienogest, norethisterone acetate, etonogestrel) were observed as major transformation reactions. Seven of the identified TPs were confirmed by reference standards. The biodegradation of cyproterone acetate revealed an almost quantitative transformation to 3α­hydroxy cyproterone acetate which is reported to be genotoxic. In a comparative evaluation of the TPs formed and the steroid structure, it was observed that molecular structure played a role in the inhibition of several transformation reactions, explaining the increased recalcitrance of these compounds. In addition, aromatization of the steroid ring A was identified for the 19-nortestosterone derivatives leading to the formation of estrogen-like TPs. For instance, the degradation of norethisterone acetate led to the formation of 17α-ethinylestradiol, a well-known and very potent synthetic estrogen. The evidence of the conversion of progestogenic to estrogenic compounds and the formation of potentially hazardous TPs indicates the need of a more comprehensive environmental risk assessment for synthetic steroids. Two of the newly identified TPs (3α-hydroxy cyproterone acetate and ∆9,11-dehydro-17α-cyanomethyl estradiol) were detected in WWTP effluents for the first time.


Assuntos
Esgotos , Poluentes Químicos da Água , Biodegradação Ambiental , Cinética , Progestinas , Águas Residuárias , Poluentes Químicos da Água/análise
13.
J Chromatogr A ; 1633: 461612, 2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33130421

RESUMO

A sensitive multiresidue method was developed to quantify 35 pharmaceuticals and 28 metabolites/transformation products (TPs) in fish liver, fish fillet and fish plasma via LC-MS/MS. The method was designed to cover a broad range of substance polarities. This objective was realized by using non-discriminating sample clean-ups including separation technique based on size exclusion, namely restricted access media (RAM) chromatography. This universal clean-up allows for an easy integration of further organic micropollutants into the analytical method. Limits of quantification (LOQ) ranged from 0.05 to 5.5 ng/mL in fish plasma, from 0.1 to 19 ng/g d.w. (dry weight) in fish fillet and from 0.46 to 48 ng/g d.w. in fish liver. The method was applied for the analysis of fillets and livers of breams from the rivers Rhine and Saar, the Teltow Canal as well as carps kept in fish monitoring ponds fed by effluent from municipal wastewater treatment plants. This allowed for the first detection of 17 analytes including 10 metabolites/TPs such as gabapentin lactam and norlidocaine in fish tissues. These results highlight the importance of including metabolites and transformation products of pharmaceuticals in fish monitoring campaigns and further investigating their potential effects.


Assuntos
Cromatografia Líquida , Resíduos de Drogas/análise , Monitoramento Ambiental/métodos , Peixes , Análise de Alimentos/métodos , Rios/química , Espectrometria de Massas em Tandem , Animais , Peixes/metabolismo , Limite de Detecção , Extração em Fase Sólida , Águas Residuárias/análise , Poluentes Químicos da Água/análise
14.
Toxics ; 8(4)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182329

RESUMO

Microplastics (MPs) have recently been discovered as considerable pollutants of all environmental matrices. They can contain a blend of chemicals, some of them added during the manufacture of plastic to improve their quality (additives) and others adsorbed from the surrounding environment. In light of this, a detailed study about the identification and quantification of target organic pollutants and qualitative screening of non-target compounds present on MPs was carried out in different types of samples: environmental MPs, collected from an Italian river, and pre-production MPs, taken from the plastic industry. Polychlorobiphenyls (PCBs), organochlorine pesticides (OCPs), and polycyclic aromatic hydrocarbons (PAHs) were chosen as target compounds to be quantified by Gas Chromatography-Mass Spectrometry (GC-MS), while the non-target screening was carried out by High Resolution Gas Chromatography-Mass Spectrometry (HRGC-MS). The target analysis revealed concentrations of 16 priority Polycyclic Aromatic Hydrocarbons by Environmental Protection Agency (EPA-PAHs) in the range of 29.9-269.1 ng/g; the quantification of 31 PCBs showed values from 0.54 to 15.3 ng/g, identifying CB-138, 153, 180, 52, and 101 primarily; and the detected OCPs (p,p'-DDT and its metabolites) ranged between 14.5 and 63.7 ng/g. The non-target screening tentatively identified 246 compounds (e.g., phthalates, antioxidants, UV-stabilizers), including endocrine disruptors, toxic and reprotoxic substances, as well as chemicals subjected to risk assessment and authorisation. The large assortment of plastic chemicals associated with MPs showed their role as a presumable source of pollutants, some of which might have high bioaccumulation potential, persistence, and toxicity.

15.
Environ Sci Technol ; 54(19): 12164-12172, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32882126

RESUMO

Apart from being considered a potential threat to ecosystems and human health, the ubiquity of microplastics presents analytical challenges. There is a high risk of sample contamination during sampling, sample preparation, and analysis. In this study, the potential of sample contamination or misinterpretation due to substances associated with disposable laboratory gloves or reagents used during sample preparation was investigated. Leachates of 10 different types of disposable gloves were analyzed using Raman microspectroscopy (µ-Raman), Fourier-transform infrared microspectroscopy (µ-FTIR), and pyrolysis-gas chromatography/mass spectrometry (pyr-GC/MS). There appeared to be polyethylene (PE) in almost all investigated glove leachates and with all applied methods. Closer investigations revealed that the leachates contained long-chain compounds such as stearates or fatty acids, which were falsely identified as PE by the applied analytical methods. Sodium dodecyl sulfate, which is commonly applied in microplastic research during sample preparation, may also be mistaken for PE. Therefore, µ-Raman, µ-FTIR, and pyr-GC/MS were further tested for their capability to distinguish among PE, sodium dodecyl sulfate, and stearates. It became clear that stearates and sodium dodecyl sulfates can cause substantial overestimation of PE.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Humanos , Intenção , Plásticos , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 738: 139866, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32806375

RESUMO

Aquatic ecosystems are globally contaminated with microplastics (MP). However, comparative data on MP levels in freshwater systems is still scarce. Therefore, the aim of this study is to quantify MP abundance in water and sediment of the German river Elbe using visual, spectroscopic (Fourier-transform infrared spectroscopy) and thermo analytical (pyrolysis gas chromatography mass spectrometry) methods. Samples from eleven German sites along the German part of the Elbe were collected, both in the water and sediment phase, in order to better understand MP sinks and transport mechanisms. MP concentrations differed between the water and sediment phase. Sediment concentrations (mean: 3,350,000 particles m-3, 125-5000 µm MP) were in average 600,000-fold higher than water concentrations (mean: 5.57 particles m-3, 150-5000 µm MP). The abundance varied between the sampling sites: In sediments, the abundance decreased in the course of the river while in water samples no such clear trend was observed. This may be explained by a barrage retaining sediments and limiting tidal influence in the upstream parts of the river. Particle shape differed site-specifically with one site having exceptionally high quantities of spheres, most probably due to industrial emissions of PS-DVB resin beads. Suspended MP consisted predominantly of polyethylene and polypropylene whereas sediments contained a higher diversity of polymer types. Determined MP concentrations correspond well to previous results from other European rivers. In a global context, MP levels in the Elbe relate to the lower (water) to middle section (sediment) of the global range of MP concentrations determined for rivers worldwide. This highlights that elevated MP levels are not only found in single countries or continents, but that MP pollution is an issue of global concern.

17.
Water Res ; 174: 115561, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32087415

RESUMO

Glucocorticoids (GCs) are one of the most prescribed pharmaceutical classes worldwide. They have reached the focus as environmental pollutants in the current scientific research, due to their potential risks to aquatic organisms even in the lower ng L-1 range. The objective of this study was to determine the kinetic behavior of selected GCs and to identify their main transformation products (TPs) in lab scaled biodegradation experiments. Therefore, we analyzed the removal of 13 GCs in aerated incubation experiments with activated sludge taken from a German municipal wastewater treatment plant (WWTP) as inoculum. For all steroids, an exponential decrease of the concentrations was observed, which was modelled by pseudo-first order kinetics. Overall, the rate constants kbiol. ranged from 0.07 L gss-1 d-1 (triamcinolone acetonide) to 250 L gss-1 d-1 (prednisolone). These results emphasize the broad variation in the biodegradability and recalcitrance of certain GCs. The selection of the studied GCs enabled a deduction of microbiological stability related to functional groups. Based on the identified TPs, a variety of enzymatically mediated reactions were postulated. Moreover, the identified TPs are characterized by an intact steroid core structure. Thus residual endocrine activity cannot be ruled out. The main observed reactions were regioselective hydrogenation of carbon double-bonds, degradation of the steroid C17 side-chain, ester hydrolysis and oxidative hydroxylation. In total, 41 TPs were tentatively identified and 22 of them were unambiguously confirmed via reference standards. Additionally, 12 TPs were detected in the effluents of municipal WWTPs and, to the best of our knowledge, the occurrence of eight of these TPs has been shown for the first time. These TPs might significantly contribute to the detected residual endocrine activities in the aquatic environments. Therefore, there is a strong need for efficient removal strategies, in particular for persistent steroid hormones with elevated potencies.


Assuntos
Glucocorticoides , Poluentes Químicos da Água , Biodegradação Ambiental , Cinética , Águas Residuárias
18.
Water Res ; 171: 115366, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31865123

RESUMO

Although several studies confirmed a wide distribution of pharmaceuticals in rivers and streams, a limited knowledge is available about the partitioning of pharmaceuticals between the water phase and suspended particulate matter (SPM). To close this gap of knowledge, we developed and validated a sensitive and high throughput analytical method for the analysis of 57 pharmaceuticals, 42 metabolites and transformation products (TP) as well as the artificial sweetener acesulfame sorbed to SPM. The method was based on pressurized liquid extraction (PLE) followed by a clean-up via solvent exchange and detection via direct injection-reversed phase LC-MS/MS and freeze-drying-HILIC-MS/MS. Freundlich isotherms were determined for 90 analytes. All showed a linear sorption behavior. Distribution coefficients (Kd) ranged from 0.64 L/kg to 9300 L/kg. For 18 pharmaceuticals, Kd values were found to be above 100 L/kg. SPM of annual composite samples were analyzed to determine the pharmaceutical concentrations between 2005 and 2015 at four sites of the river Rhine: Weil, Iffezheim, Koblenz and Bimmen as well as between 2006 and 2015 at one site of the river Saar, at Rehlingen. In these SPM samples, up to 61 of the 100 analytes were detected with concentrations up to 190 ng/g d.w. (dry weight) for guanylurea, a transformation product of the antidiabetic metformin. For most analytes, increasing concentrations were found along the length of the Rhine and higher concentrations were measured in Rehlingen/Saar. Normalization of the data with the antiepileptic drug carbamazepine as an intrinsic tracer for municipal wastewater indicated possible industrial discharges for four analytes. For most pharmaceuticals, the annual concentrations exhibited a good correlation with the consumption volumes in Germany.


Assuntos
Rios , Poluentes Químicos da Água , Cromatografia Líquida , Monitoramento Ambiental , Alemanha , Material Particulado , Espectrometria de Massas em Tandem
19.
Anal Bioanal Chem ; 411(26): 6959-6968, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31471683

RESUMO

The quantification of microplastics (MP) in environmental samples is currently a challenging task. To enable low quantification limits, an analytical method has been developed combining pressurized liquid extraction (PLE) and pyrolysis GC-MS. The automated extraction includes a pre-extraction step via methanol followed by a subsequent PLE using tetrahydrofuran. For the most frequently used synthetic polymers polyethylene (PE), polypropylene (PP), and polystyrene (PS), limits of quantification were achieved down to 0.007 mg/g. Recoveries above 80% were attained for solid matrices such as soil and sediments. The developed method was applied for MP quantification in environmental samples such as sediment, suspended matter, soil, and sewage sludge. In all these matrices, PE and PP were detected with concentrations ranging from 0.03 to 3.3 mg/g. In sewage sludge samples, all three polymers were present with concentration levels ranging between 0.08 ± 0.02 mg/g (PP) and 3.3 ± 0.3 mg/g (PE). However, especially for solid samples, the analysis of triplicates revealed elevated statistical uncertainties due to the inhomogeneous distribution of MP particles. Thus, care has to be taken when milling and homogenizing the samples due to the formation of agglomerates. Graphical abstract.

20.
Environ Sci Technol ; 53(19): 11467-11477, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31380625

RESUMO

Plastics are known sources of chemical exposure and few, prominent plastic-associated chemicals, such as bisphenol A and phthalates, have been thoroughly studied. However, a comprehensive characterization of the complex chemical mixtures present in plastics is missing. In this study, we benchmark plastic consumer products, covering eight major polymer types, according to their toxicological and chemical signatures using in vitro bioassays and nontarget high-resolution mass spectrometry. Most (74%) of the 34 plastic extracts contained chemicals triggering at least one end point, including baseline toxicity (62%), oxidative stress (41%), cytotoxicity (32%), estrogenicity (12%), and antiandrogenicity (27%). In total, we detected 1411 features, tentatively identified 260, including monomers, additives, and nonintentionally added substances, and prioritized 27 chemicals. Extracts of polyvinyl chloride (PVC) and polyurethane (PUR) induced the highest toxicity, whereas polyethylene terephthalate (PET) and high-density polyethylene (HDPE) caused no or low toxicity. High baseline toxicity was detected in all "bioplastics" made of polylactic acid (PLA). The toxicities of low-density polyethylene (LDPE), polystyrene (PS), and polypropylene (PP) varied. Our study demonstrates that consumer plastics contain compounds that are toxic in vitro but remain largely unidentified. Since the risk of unknown compounds cannot be assessed, this poses a challenge to manufacturers, public health authorities, and researchers alike. However, we also demonstrate that products not inducing toxicity are already on the market.


Assuntos
Benchmarking , Plásticos , Polímeros , Polipropilenos , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...